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ABSTRACT 

This focus of this thesis is the application of text detection, which is a field within computer 

vision, in structural drawings. To understand a structural system and conduct a rapid assessment 

of an existing structure would benefit from the ability to read the information contained within the 

drawing or related engineering documents. Extracting engineering data manually from the 

structural drawings is incredibly time-consuming and expensive. In addition, the variation in 

human engineers’ experience makes the output prone to errors and false evaluations. In this study, 

the latest development in computer vision, especially for text detection, using large volumes of 

words in some structural drawings, is explored and evaluated. The goal is to read text in structural 

drawings, which usually has some feature noises due to the high complexity of the structural 

annotations and lines. The dataset consists of computer-generated structural drawings which have 

different word shapes and types of fonts with various text orientations. The utilized structural 

drawings are floor plans, and thus contain structural details which are filled with various structural 

element labels and dimensions. Fine tuning of the pre-trained model yields significant performance 

in unstructured text detection, especially in the model’s recall. The results demonstrate that the 

developed predictive modeling workflow and its computational requirements are sufficient for the 

unstructured text detection in structural drawings. 
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 INTRODUCTION 

1.1 Motivation 

The inspection of existing structures is one of the critical tasks that engineers do. This is 

important because our infrastructure is rapidly growing and clearly needs to be monitored to ensure 

structural safety, especially when a building is reaching its design lifespan. In addition, there is a 

possibility that future demand of a given structure will increase based on an updated design code 

or new designated occupancy, which makes previous design assumptions irrelevant. Furthermore, 

the asset management systems for the infrastructures in every country often have structural 

drawings in their archived document databases. If the structure was built before the 

implementation of digital asset management systems, the conversion of the printed structural 

drawings would be necessary to extract these details in an automated way. The digitalization of 

these structural drawings would be especially helpful when structural safety needs to be quickly 

assessed by an engineer in a post-hazard situation. 

One of the key factors to understand the structural system is the ability to read and 

understand the information contained within the drawing or related engineering documents. For 

instance, understanding a bridge structure from the written document requires the engineers to 

locate the geographic location of the bridge, determine the span of the bridge, and identify the 

section of the girders, the dimension of the piers, and the reinforcement details of the concrete 

piers and piles. Also, engineers may need to further assess the bridge by modelling the geometry 

of the bridge, inputting the material properties, the loadings, and other relevant assumptions. 

However, these tasks face some obstacles that need to be resolved. First, many engineering 

documents that need to be reviewed during a specific project. Extracting engineering data 

manually from the structural drawings is incredibly time-consuming and would require a large 

number of man-hours. This is prohibitively expensive in most developed countries. Second, the 

experience of human engineers varies considerably from person to person, and this may add 

uncertainty. 

To overcome these challenges, we aim to exploit computer vision for information extraction. 

Computer vision is one form of Artificial Intelligence which enables computers to process visual 

information and recognize the pattern of environments. At the present time, there are large numbers 
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of images available which can be used to improve computer vision algorithms. Furthermore, the 

development of computer vision is strengthened by the new development of new GPU hardware, 

so that neural network training and utilization is becoming faster and cheaper. According to 

Lavrentyeva (2021), computer vision is used widely in retail & ecommerce, education, healthcare, 

fitness & sports, agriculture, manufacturing industries, and mining industries. Furthermore, the 

application of computer vision has been transferred to other new fields, especially to civil 

engineering problems, which were conducted by Yeum et al (2015), Spencer Jr. et al (2019), and 

others. Automation provided by modern computer vision into the repetitive process of information 

extraction is simply one example this. However, we have not found publications that explain the 

application of computer vision to the unstructured text detection in structural drawings. 

The focus of this thesis is to examine the potential for applying the latest developments in 

text-detection algorithms for the purpose of reading and extracting the information contained 

within structural drawings. Specifically, the goal is to detect and read, or interpret the text related 

to the dimensions provided in the drawings that are associated with structural components. The 

method is applied to computer-generated structural drawings with various font styles and shapes. 

The results demonstrate that a predictive model can detect the unstructured text with good 

performance. 

1.2 Objectives and Contributions 

In this study, the research objective is to utilize the latest development of computer vision, 

especially in text detection, using a ground truth training set containing large volumes of words 

from structural drawings. This method will enable an automated interpretation of the engineering 

information which is available in structural drawings or engineering documents. By utilizing the 

latest technology of text detection, the computer is capable of detecting text from the structural 

drawings. Structural drawings have high visual complexity due to the integration of graphics 

related to the structural elements, plus those for all of the annotations and lines. Promising 

applications of this method is for digitalizing the information from an image, for instance, 

structural modelling for assessment, bill of materials calculation, and generating a summary of the 

information about the drawings. 

The contribution of this research is applying modern computer vision to a new purpose to 

transform the slow conventional structural assessment with large volumes of structural drawings 
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and engineering documents collected from the real-world design output into faster, reliable, and 

accurate future structural assessment. 

1.3 Scope of Work 

The text detection method is applied to real-world structural drawings, and the results 

demonstrate the potential of this method. In Chapter 2, a literature review is provided explaining 

the historical development of computer vision and text detection methods. In Chapter 3, the 

methods adopted for this work are described and a rationale is provided for why these methods are 

most appropriate for the work included in the thesis. In Chapter 4, the network architecture used 

for detecting unstructured text in structural drawings is described. In Chapter 5, the dataset is 

described, and the results are provided, with lessons learned along the way regarding overcoming 

the challenges in text detection. In Chapter 6, the conclusions of the study are discussed and the 

suggestions for the future research are shared. 
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 LITERATURE REVIEW 

2.1 Structural Drawings 

In building construction projects, there are five crucial phases, which are: initialization, 

planning, execution, controlling, and project closing. Each of the phases requires communication 

media among stakeholders (owners, professional designer, and construction contractor) for easy 

implementation in the field. Moreover, printed documents, such as contracts and drawings, would 

be required in this communication.  Furthermore, the drawings are different in each phase. In this 

research, structural drawings are utilized for the case study. 

Structural drawings must be made developed before a building is constructed, based on the 

architectural drawings, and are required to satisfy local design code and laws. These drawings 

explain the general notes, set of plans, building elevations, building sections, and details of the 

building structure. In the past, these drawings were drawn manually by engineers. Nowadays, the 

development of computer tools enabled a revolution in the construction sector, especially in 

structural drawings. The number of drawings depends on the structure’s complexity. Therefore, 

digitalization of the complex and sets of numerous structural drawings would be important to 

support their rapid interpretation by the engineers. 

2.2 Deep Learning 

The data and information in this technology era is significantly increasing over time. 

However, humans are limited in the speed and consistency with which they can process these large 

volumes of data. Therefore, enabling computers to assist humans in interpreting and making 

decisions based on such data could be beneficial. Realizing the high potential of Artificial 

Intelligence (AI) in the future, many researchers consider how to find and use the best algorithms 

to revolutionize their field. This approach requires the computer to perform a type of regression 

on a given pattern and train a model such that it can provide the correct prediction for new data 

inputs. This topic is called machine learning. Moreover, this field is supported by the exponentially 

increasing computational power of the computer, which is why machine learning is growing 

rapidly and gaining traction in various fields. 
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Currently, machine learning has evolved to be able to interpret the complex and high-

feature patterns, giving the appearance that it can understand images and data. This class of 

machine learning requires multiple layers of artificial neural networks, which are also complex 

and have high nonlinearity. When there is a really large number of parameters involved in the 

calculation, it is considered to be deep learning. Furthermore, the complex tasks, such as computer 

vision, natural language processing, language translation, can be solved by the deep learning 

architecture and the result of the prediction is comparable, even exceeding, the human performance 

doing similar tasks. 

The methods for deep learning training of the typical network architecture are: 

• Determining the proper deep learning architecture for the case study. 

• Prepare the datasets for the model training and testing purposes. 

• The datasets are inputted to the model. Then, they are processed with the multi-

layer calculation to produce the prediction or output. 

• In model training, the model compares the calculated output to the ground-truth 

output, which is based on the labelled data. This comparison is quantized as loss 

function. In order to achieve the best prediction, the model has to minimize the 

loss function. The error of the output is converted to the gradient which is 

backpropagated inside the model to generate new weight to the hidden layer.  

• In model testing, the model calculates the output with different datasets and checks 

the performance of the model. This is required because the model needs to be 

ensured that the overfitting does not happen during the model training. 

There are several types of the deep learning architectures, which are explained below. 

2.2.1 Feedforward Neural Network (FNN) 

Sandberg et al (2001) explained that feedforward neural network consists of multiple 

hidden layers connected in one direction. This artificial neural network does not form any loops 

between the layers. The assumption of the input is that all raw information is considered important 

and needs to be connected to the hidden layer. 
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Figure 2.1. Feedforward Neural Network Typical Architecture 

2.2.2 Convolutional Neural Network (CNN) 

According to Saha (2018), a convolutional neural network is formed by the set of 

convolution kernels. These kernels are then applied to the certain raw information or processed 

input data and transform the previous signal into a new calculated region value. This maximum or 

minimum value of the region can represent the new output signal, which is processed further. 

Usually, the convolutional kernel outputs are then connected to the fully connected layers, which 

is similar with the FNN architecture, to classify the output prediction 

 

 

Figure 2.2. Convolutional Neural Network Typical Architecture 
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2.2.3 Recurrent Neural Network (RNN) 

According to Biswal (2022), recurrent neural networks consist of multiple hidden layers 

and form some loops. It means that the output of a hidden layer is being considered as the input of 

the previous hidden layer. Therefore, it reflects the two-directional signal in this network.  RNN 

is important for the sequencing tasks and is usually considered as the memory of the network. 

 

Figure 2.3. Recurrent Neural Network Typical Architecture 

 

2.2.4 VGG16 

Very Deep Convolutional Network for Large-Scale Image Recognition, which is popularly 

known as VGG, is designed to improve a number of parameters of the architecture and increase 

the depth of network by adding some convolutional layers capable of utilizing extremely small 

(3x3) convolutional filters in all layers. The network architecture was proposed by Simonyan et al 

(2015) 

Furthermore, the architecture configuration consists of six types depend on the weight 

layes, such as: type A (11 weight layers), type A-LRN (11 weight layers), type B (13 weight 

layers), type C (16 weight layes), type D (16 weight layers), type E (19 weight layes). Each type 
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of ConvNet Configuration is composed of a convolutional layer 3x3 (except for type C that has 

convolutional layer of 1x1), max-pooling, and three fully connected layers.  

Focusing on Type D which has 16 weight layers, consisting of 5 parts, i.e. the architecture 

in layer 1 and 2 have a 64 channel 3x3 kernel. Next, layer 3 and 4 have a 128 channel 3x3 kernel. 

After that, layers 5, 6, and 7 depend on the convolutional layer of the 256 channel 3x3 kernel. 

Layers 8, 9, and 10 composed by convolutional layer 512 channel of 3x3 kernel. Then, layers 11, 

12, and 13 have a convolutional layer of 512 channels of 3x3 kernel. Every part of the 

convolutional layer is followed by one max-pooling that is performed over a 2x2 pixel window, 

with stride 2. Afterwards, there are 3 fully connected (FC) layers which are similar with all 

networks. Final layer of this architecture is the Soft-max layer. The VGG16 layer with input image 

dimension of 224 x 224 x 3 is explained in Table 2.1. VGG16 Layer Explanation 

 

Table 2.1. VGG16 Layer Explanation 

 

No. Convolution 
Output Dimension after 

Convolution + ReLU 
Pooling 

Output 

Dimension 

1. Layer 1 and 2 224 x 224 x 64 max pool stride = 2, 

size 2 x 2 

112 x 112 x 64 

2. Layer 3 and 4 112 x 112 x 128 max pool stride = 2, 

size 2 x 2 

56 x 56 x 128 

3. Layer 5, 6, and 7 56 x 56 x 256 max pool stride = 2, 

size 2 x 2 

28 x 28 x256 

4. Layer 8, 9, and 

10 

28 x 28 x 512 max pool stride = 2, 

size 2 x 2 

14 x 14 x 512 

5. Layer 11, 12 and 

13 

14 x 14 x 512 max pool stride = 2, 

size 2 x 2 

7x7x512 
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Figure 2.4. VGG16 Network Architecture with 224 x 224 x 3 Image Dimension 

 

2.2.5 U-Net 

Ronneberger et al (2021) introduced U-Net, which is a convolutional network that is based 

on encoder and decoder networks. This network can be trained end-to-end from very few images 

and outperforms the best method on the ISBI challenge for segmentation of neuronal structure in 

electron microscopic stacks. 

In addition, U-Net is inspired by the fully convolutional network which has been modified 

by adding successive layers. The function of this layer is to replace the pooling operator with the 

up sampling operator, which has a large number of feature channels that can result in a higher 

resolution output. 

The network architecture of U-net is divided by the contracting path and expansive path. 

The function of the contacting path is to process the input with 3x3 convolutions, rectified linear 

unit (ReLU), 2 x 2 max pooling with stride 2 for down sampling. Besides, the expansive path is 

using the 2 x 2 convolution for up-sampling the future map, 3 x 3 convolutions and ReLu. The 

total network has 23 convolutional layers. 
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Figure 2.5. U-Net Network Illustration 

 

2.3 Computer Vision 

Computer vision is a form of artificial intelligence and is used to enable the computer to 

gain a high-level of information from digital images or videos. This includes information about 

the content of scenes, or the location of objects in an image, for instance. With this information 

extracted, the computer can give the appearance that understands the image, and that understanding 

helps it to make relevant decisions. According to Ferreira et al (2021), this technology has strong 

potential to assist humans in decision making based on computer visual perception. There are 

several tasks that can be automated by the computer using the computer vision method, such as 

object detection and recognition, text detection and recognition, content-based image search, 

optical character recognition, facial recognition, and motion analysis, scene reconstruction, image 

restoration, and so on. According to Lavrentyeva (2021), computer vision is widely used in a 

growing set of industries, ranging from manufacturing to medical diagnostics. 

According to Huang (2009), research was conducted by MIT which pioneered computer 

vision. It has been about extracting 3D geometry from a structure. This research was the foundation 

of computer vision algorithms nowadays, including the extraction of the edges from images, 

determination of the lines, and object segmentation. The performance is increasing because the 
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performance of deep learning networks is evolving and surpassing the prior methods. In addition, 

increasing numbers of labelled databases such as ImageNet, which was introduced by Deng et al 

(2009), and the development of the necessary technologies will also accelerate computer vision 

research. 

Fei-Fei Li et al (2017) categorized computer vision basic tasks based on their function: 

1. Image Classification 

This task is enabling the predictive model to classify an input image based 

on the type of predefined categories. It usually has a single category for the output. 

For instance, the model can differentiate the hand-written words and the 

computer-printed words based on the features and shapes of the input words. 

 

2. Localization 

This task is enabling the predictive model to determine the location of the 

classified single object by drawing a bounding box around the object. For 

instance, if the hand-written word is detected in an input image, the bounding box 

is drawn around the highlighted words. 

 

3. Object Detection 

This task is enabling the predictive model to determine multiple classified 

objects and their location inside an input image by drawing the bounding boxes. 

It is similar with image classification + localization, but it is applied for more than 

one object inside an input image. For instance, if there are hand-written word and 

computer-printed worda exist in an input image, the model can detect both, 

classify them as different categories, and highlight them with bounding boxes. 

This task is performed by suggesting the proposed region of interest for 

each object, which requires a more complex model compared to the image 

classification + localization predictive model. 

 

4. Semantic Segmentation 

This task is enabling the predictive model to assign each pixel of the input 

image by a pre-determined categories label. This task is similar with object 
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detection task, but it is highlighted as being more detailed by annotating the pixel 

of interest. For instance, if a hand-written word and computer-printed word exist 

simultaneously in an input image, the model can detect both, classify them as 

different categories, and highlight the words by the pixel location, usually with 

distinct colors. 

 

5. Instance Segmentation 

This task is enabling the predictive model to assign each pixel of the input 

image by the pre-determined categories label and differentiate between objects. It 

means that although there are multiple objects that have same categories label, the 

predictive model will give some different index number to those objects. For 

instance, if there are two hand-written words in an input image, the model can 

detect both, classify them as different categories, and highlight the words by the 

pixel location, and label the words with different label, usually with distinct 

colors. 

 

 

Figure 2.6. Image Classification + Localization 
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Figure 2.7. Object Detection 

 

 

 

 

 

 

 

           

 

Figure 2.8. Image Segmentation 

 

 

           

 

 

Figure 2.9. Instance Segmentation 
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Furthermore, this growing field of deep learning algorithms requires large image datasets 

to study and learn the text pattern, and then test and validate them until the performance of the 

predictive modelling is sufficient. Convolutional neural networks (CNN) are heavily utilized to 

transform the image raw data into meaningful value with less hyperparameters as compared to 

other deep learning networks. 

2.4 Scene Text Detection 

In human history, text plays an important role in written communication. Therefore, 

automation of text detection would enable quite a few methods for assisting humans. Many aspects 

can potentially assist human activities, such as image search, language translation, navigation of 

robots, and automation of manufactures. 

According to Yao et al (2016), there are several challenges that needs to be solved, which 

are: 

• Text Diversity and Variability in Natural Scenes 

• Complex Background Noise or Inference 

• Poor Quality of Image 

In order to tackle these problems, synthetic word databases were generated by Gupta et al 

(2016) in front of various natural scene images with different orientation and distortion. Based on 

this huge database, the development of new algorithms for text detection is evolving. 

In the past before deep learning was highly utilized, the algorithm trend of scene text 

detection was bottom up, where the manual-crafted features were significantly utilized, for 

instance, MSER or SWT, as a primary building component. On the other hand, the present deep 

learning utilization at text detection is popular by using object detection / segmentation algorithms, 

like Faster R-CNN, FCN, or SSD. 

There are various types of text detector algorithms which are explained by Baek et al 

(2019). These include: 

• Regression-based text detectors 
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Utilizing box regression from object detectors in text detection has been 

implemented. Different from the regular object in general, the texts are usually 

illustrated in irregular shapes with various dimensions. TextBoxes, DMPNet, and 

Rotation-Sensitive Regression Detector (RSDD) has been implemented to detect 

various text shapes, incorporating quadrilateral sliding kernels, and enable the rotated 

texts by actively rotating the kernels. However, there are major limitations to capture all 

possible text shapes when implementing this method. 

• Segmentation-based text detectors 

Detecting texts at a pixel level by using segmentation has been proposed. The 

proposal starts from an area bounding approximation of the texts, which can be found 

in Multi-Scale FCN, Holistic-Prediction, and PixelLink algorithms. In addition, utilizing 

the attention module to increase text-related area by reducing the background 

interference has been implemented using the SSTD algorithm. Nowadays, the text can 

be detected by text region prediction and its centerline together with the geometrical 

properties by implementing the TextSnake algorithm. 

• End-to-end text detectors 

End-to-end text detectors algorithms have been proposed to simulate the text 

detection and text recognition simultaneously. This problem is treated as the semantic 

segmentation problem and trained on the neural network in an end-to-end basis. FOTS, 

EAA, and Mask Text Spotters are some of the algorithms which implemented this 

method. However, the words can be differentiated with spaces, meaning, or color and 

word segmentation cannot be strictly defined. So, word annotation dilutes the ground-

truth meaning for regression and segmentation problems. 

• Character-level text detectors 

MSER has been proposed to predict text block candidates and detect individual 

characters. However, it has a drawback if the images have low contrast, are highly 

distorted, or exhibit light reflection. In addition, generating prediction maps of the 

characters requires character level of annotation. In order to tackle this problem, 

WordSup has proposed a weakly supervised algorithm to train the neural network. 

However, due to the camera point of view, text detection is vulnerable to perspective 

shapes. Also, the number of anchor boxes and the sizes are limited. 
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One of the crucial performance metrics of predictive modelling in scene text detection is 

precision. Precision is defined as the ratio between the number of true positives and the summation 

of the number of true positives and false positives. This metric reflects the number of correct 

positive predictions made. If the precision is low, it means that many text detection predictions are 

not at the ground truth labelled area. 

However, the performance of predictive modelling in scene text detection not only depends 

on the precision or accuracy, but also the recall. Recall is defined as the ratio between the number 

of true positives and the summation of the true positives and false negatives. This metric reflects 

the number of the correct positive predictions compared to all positive predictions that are made. 

If the recall is low, much of the text goes undetected by predictive modelling. 

Those metrics above need to be maximized. For representing the precision and recall as a 

single value, the F-measure score is introduced by van Rijsbergen (1979). The definition of F-

measure is: 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

This measure represents the performance of the predictive modelling in a balanced way. 

Low value at one of the metrics produces a low score of the F-measure. 

2.5 Character Region Awareness for Text Detection 

Previous work toward scene text detection development was significant and showed good 

performance. The method is training the model to understand the text inside the image and make 

predictions of the word-level bounding boxes. However, there is a difficulty to predict highly 

distorted words. The highly distorted words usually have varied font style or thickness, and 

arbitrary shapes. The number of the datasets with high-level annotation at the character level is 

very rare. In addition, doing a high-level annotation at the datasets is time consuming and requires 

lot of effort. 

Baek et al (2019) introduced Character Region Awareness for Text detection (CRAFT) 

which can calculate the character region score and affinity region score. These scores are mapped 

into a contour map and then used to make the prediction of the bounding boxes. The character 
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regions score represents the concentration value of the characters inside the texts and the affinity 

score is utilized to group the characters into words. This text detection method is popular and one 

of the best current algorithm based on benchmark datasets, such as ICDAR and MRSA. Due to the 

limited character-level annotation dataset, weakly supervised learning can be conducted by 

generating pseudo ground truth at word-level annotation datasets using cropped words to estimate 

the characters position and their affinity. It requires two types of data for the weakly supervised 

training; quadrilateral annotations for cropping word images and the number of the characters 

inside the words. It is important to input the quadrilateral coordinates and the transcribed words 

inside the third-app application for image labelling.   

 

 

Figure 2.10. Overall Training Workflow in CRAFT Algorithm  

 

 

Figure 2.11. Conversion of Word-Level Annotation to Character-Level Annotation 
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Once word-level annotation existed, Baek et al (2019) proposed the implementation of 

character split algorithm for generating character-level annotation. The image is cropped using 

word boxes that are labelled in advance, and a region score is generated using the existing 

predictive model. Then, the region score heatmap is processed by watershed algorithm in order to 

determine the boundary of possible adjacent characters. The watershed algorithm, which was 

introduced by Beucher (1994), is an algorithm in image segmentation to determine the boundary 

of the object. The methods consist of these steps: 

• Approximate the object using the color conversion and threshold algorithm 

• Find the sure background area by using dilation algorithm and foreground area by using 

distance transform and threshold algorithm 

• Determine the unknown region-based subtraction of the background area and foreground 

area 

• Determine the marker of the sure object 

• Expand the marker region by using watershed code to estimate the boundary of the sure 

objects. 

Based on the largest dimension of each sure character position, the character boxes are 

generated by using the object boundaries produced by the watershed algorithm. Then, the character 

boxes are unwarped or transformed to the original image and the character-level annotations are 

generated. 
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Figure 2.12. Watershed Algorithm 

The real or pseudo ground truth heatmap score generation is based on the character box 

dimension, which is illustrated in Figure 2.13. The character boxes are explicitly obtained by 

strong supervision labelling or watershed algorithm and the affinity boxes are generated based on 

the center of the top and bottom triangles made by diagonal intersections of the character boxes. 

Then, the rectangle 2D Gaussian contour is transformed to each bounding boxes inside the image.  

So, region score map and affinity score map of each input image can be obtained. 

Baek et al (2019) proposed the architecture of the CRAFT algorithm based on a fully 

convolutional network based on VGG-16 with batch normalization. The skip connections are 

modelled at the decoding part, which is similar to U-Net. The outputs of the model are the region 

score and the affinity score. The network architecture is displayed on Figure 2.14. CRAFT Network 

ArchitectureFigure 2.14. 

 

Figure 2.13. Ground Truth Generation Procedure  
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Figure 2.14. CRAFT Network Architecture 

 
Region score represents the probability that a given pixel is at the center of the character, 

and the affinity score represents the probability that a given pixel is at the center of the space 

between characters. If these scores are generated, it would be easier to determine the text and make 

the bounding box prediction. 

Some SynthText datasets, which are utilized in strong supervision, are still required to 

maintain the knowledge of the good scene text detection prediction. The SynthText dataset is 

widely used for scene text detection. Gupta et al (2016) proposed the synthetic text dataset, which 

consists of 800,000 images with the 8,000,000 synthetic words, complete with the text values, 

word bounding boxes, and character bounding boxes. The words are also well augmented with 
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different shapes, color, rotation, and distortion. In addition, they are also located in natural scene 

images, which are helpful for giving the background noise in the training and testing. 

Batch normalization method, proposed by Ioffe et al (2015), is utilized in an up-

convolutional block to ensure better performance in training deep neural networks.  There is a 

phenomenon in neural network training called internal covariate shift. Internal covariate shift is 

defined as the distribution changes in network activations due to the network parameters change 

in training. This shift requires the training to utilize lower learning rate for avoiding the gradient 

explosion and careful parameter initialization. The method of batch normalization is normalizing 

the input of the mini batch by calculating the mean and variance of the mini batch, then the 

normalized input is scaled and shifted by the trainable parameters. The utilization of batch 

normalization can reduce the overfitting problem without depending too much to the dropout 

algorithm, increase learning rate so the training would be faster, make the stochastic training better 

by shuffling the training dataset more thoroughly, and reduce the distortions existed in the images. 

In order to do better stochastic gradient-based optimization in neural network training, 

Kingma et al (2017) introduced the Adam Optimizer algorithm. The optimizer is using exponential 

moving average gradients and squared gradients. Then, the optimizer modifies their biases for 

updating the parameters. So, the updated parameters are calculated based on the determined 

learning rate and modified gradients.  The method has some advantages, which are: 

• Efficient computation 

• Fewer memory requirements 

• Recommended for the large number of parameters training. 

• Robust for the wide range of the non-convex optimization problems 

2.6 Application to Structural Drawings and Current Challenges 

Based on the latest work in text detection, it should be feasible to achieve unstructured text 

detection in images of structural drawings. Having the ability to automate and extract the 

information from the structural drawings would be beneficial. 

However, fine-tuning of the model will likely be required due to the presence of complex 

structural drawings features which have not yet been included in the training datasets. Therefore, 

it can possibly produce low prediction and recall value. 
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 RESEARCH METHODS 

The methods in this research consist of 8 main steps, which are: 

1. Image Labelling 

2. Image Pre-processing 

3. Dataset Separation 

4. Image Rotation for Data Augmentation 

5. Dataset Generation 

6. Model Initialization 

7. Model Training 

8. Model Testing 

These main steps are illustrated in Figure 3.1 and explained further in the following 

subsections. 

3.1 Image Labelling 

Texts inside the structural drawings are marked inside of a third-party application for the 

image labelling, such as LabelBox. The position of each labelled word is exported into a .json file 

to be processed further. 

3.2 Image Pre-processing 

The structural drawings usually have a high resolution as compared to more typical images 

and are sensitive to dimension resizing. Therefore, image cropping with certain resolution is 

utilized so the images are compatible with existing networks. Overlapping the cropping position 

is important to make sure there are no truncated words, which would become a disturbance for 

model training and model testing. Furthermore, deleting cropped words when they occur inside 

the cropped image is important to minimize the false negative of the model prediction. 

 

 

 



 

 

33 

 

Figure 3.1. Research Workflow 
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Figure 3.2. Image Cropping with Overlapping Boundary 

 

3.3 Dataset Separation 

In this step, the training and testing image datasets are separated. The number of training 

images is about 60 percent of the total set of images, while the remaining images are for testing 

purposes.  

3.4 Image Rotation for Data Augmentation 

The orientation of the texts inside the structural drawings is sometimes not aligned with 

either the horizontal or vertical direction. Therefore, additional rotated images are added for 

inclusion in the training dataset. This type of data augmentation is not applied in the testing dataset.  

Angles of 45 and 90 degrees, rotated in the counterclockwise and clockwise direction, are both 

implemented. 

3.5 Dataset Generation 

As explained in the previous chapter, text detection requires a character bounding box and 

an affinity bounding box. Using high-level annotation of the image, such as SynthText dataset, is 

important for the ground truth. However, it would be hard to do high-level annotation to all the 

labelled datasets. Therefore, the pseudo ground truth is generated using the watershed algorithm 

based on the cropped text, to ensure there is no disturbance, such as lines or fill pattern. 
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Figure 3.3. Image Rotation for Data Augmentation 

 

3.6 Model Initialization 

The previous strong supervision model with the SynthText data is loaded to the predictive 

system. This model would be trained and tested using the generated dataset. Learning rate and 

momentum must both be defined at the beginning. 

3.7 Model Training 

Weakly supervised training is commenced inside the model training. The predicted output 

is compared to the ground truth output and quantified with the loss function. The value of the loss 

function is processed further becomes the new gradient for the weight model training. 
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3.8 Model Testing 

The performance of the model is tested using a different dataset. The F-Score, which 

consists of both prediction and recall performance, is monitored. This step is important to 

determine when to define the training completion. The performance of the model with the train 

dataset is also monitored to avoid overfitting in the training dataset. If the model performance 

based on the training dataset is increasing but the model performance based on the testing dataset 

is decreasing, the training is completed, and the highest performance of the predictive model is 

utilized.  
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 NETWORK ARCHITECTURE 

In this research, the CRAFT algorithm is adopted and explored for text detection. The 

implementation of the CRAFT fine tuning training programming code is based on works of Singh 

(2021). The input to the algorithm is an image containing text, and the network architecture 

consists of the image down sampling process, the image up sampling process, and the evaluation. 

The output to the algorithm is the image score, which is used for determining the level of the 

success of the code for the application here, reading structural drawings. Before inputting each of 

the images into the algorithm, the structural drawings need to be pre-processed. The image pre-

processing steps was explained in Chapter 3. 

 

 

Figure 4.1. Workflow for Image Processing in Text Detection using the CRAFT Algorithm 

 

 

In this study, the image input size of each image input to the algorithm is 768 x 768 x 3 

pixels, which follows the strong supervision image input assumption. It is necessary to follow the 
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trained at this specific image size. If the dimension does not match this size, it will affect the 

training results. 

The image input to the algorithm is processed further using a down-sampling process. It 

adopts VGG16-BN as the backbone of the feature extraction. This specific process is executed in 

six phases. At each phase, the image is first downsized to be half of the original width and height 

dimension, while increasing the number of channels by using 3 x 3 convolutional kernels and 

ReLU activation functions, and then applying max pooling to downsize the image dimension. After 

down-sampling, the extracted features are then up-sampled to the original dimension by 4 

convolutional blocks. At each convolutional block, the input signal is processed by [1 x 1 x number 

of inputted channel] convolutional kernel, followed by a batch normalization. Then, the 

intermediate signal is processed further with [3 x 3 x number of inputted channel / 2] convolutional 

kernel, followed by the further batch normalization. In addition, there are skipped connections 

from the downsizing output signal to the up-sampling process. The output of phase 5 in down-

sampling process is concatenated to the output of phase 6 in down sampling process. Then, the 

output of phase 4 in down-sampling process is concatenated to the output of first up-sampling 

convolutional block. The skipped connections also existed at the output of phase 3 in down 

sampling process is concatenated to the output of second up-sampling convolutional block, and 

the output of phase 2 in down-sampling process is concatenated to the output of third up-sampling 

convolutional block. After the 4 up-sampling convolutional blocks, the up-sampling process 

continued to the further up-sampling by convolutional kernels without batch normalizations. Then 

the output of the score can be obtained. There are two scores generated by the algorithm, which 

are region score and affinity score. These scores were defined in Chapter 3. Then, these scores are 

converted to the heatmap and post-processed to determine the text detection bounding boxes. The 

clear illustration of the network architecture is available in Figure 2.14. 

The proposed architectural network has 20,770,466 parameters to be considered in 

predictive modelling. 
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 DATASET AND FINE-TUNING RESULT 

This chapter explains about the dataset description, the training parameters and the loss 

function used in fine-tuning training, and also the training results. As a matter of fact, different 

training parameters can yield different training results. So, the training parameters and training 

results needs to be stated clearly in this chapter to make the fine-tuning of the pretrained predictive 

model is reproducible.  

5.1 Dataset Description 

The dataset consists of computer-generated structural drawings which have different words 

shapes and type of fonts with the text being in various text orientations. The structural drawings 

are floor plans and structural details which are full of structural element labels and dimensions. 

The structural drawings available for this research are separated into two groups, including 6 sets 

of structural drawings for the training dataset and 5 sets of structural drawings for the testing 

dataset. Because the dimensions of the structural drawings are very large, the drawings are 

partitioned into smaller images with about 768 x 768 pixel to avoid their quality to be downgraded 

due to over resizing. To compensate for the possibility of cropped words when partitioning the 

images, a 50% overlapping partition is also used. After this pre-processing, the number of words 

in the training dataset and the testing dataset are 2942 words and 2014 words respectively. 

The training dataset is augmented by 4 types of rotations to make the training more 

significant. The testing dataset is not augmented because it is rare to have extreme variations in 

orientation. Based on this pre-processing procedure, there are in total 3255 training images, 

including the rotated images and there are 387 testing images. The images in a training batch are 

shuffled randomly and SynthText data is still utilized with 16.66% probability to retain the strong 

supervision characteristic. 

5.2 Training Parameters 

The loss function that is utilized for the training with the word-level annotated sample 

needs to consider the pseudo ground truth confidence level. Let w be the sample of the training 



 

 

40 

data, R(w) and l(w) be the region of the bounding box and the sample word length, respectively. 

From the character splitting process by the watershed algorithm, we can approximate the character 

bounding box and measure all the characters length lc(w). The confidence score sconf(w) can be 

calculated as follows: 

𝑠𝑐𝑜𝑛𝑓(𝑤) =
𝑙(𝑤) − 𝑚𝑖𝑛(𝑙(𝑤), |𝑙(𝑤) − 𝑙𝑐(𝑤)|)

𝑙(𝑤)
 

and the pixel-related confidence map Sc in the region of the bounding box R(w) is computed as 

follows: 

𝑆𝑐(𝑝) =  {
𝑠𝑐𝑜𝑛𝑓(𝑤) → 𝑝 ∈ 𝑅(𝑤)

1 → 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where p is a pixel which should be inside the bounding box for the applied pixel-related confidence 

map. Then, the loss function L is defined as: 

𝐿 = ∑ 𝑆𝑐(𝑝) [‖𝑆𝑟(𝑝) − 𝑆𝑟
∗(𝑝)‖2

2 + ‖𝑆𝑎(𝑝) − 𝑆𝑎
∗(𝑝)‖2

2]

𝑝

 

where S*
r (p) and S*

a (p) are the pseudo-ground truth region score and affinity map which are 

generated by the watershed algorithm, and Sr (p) and Sa (p) are the predicted region score and 

affinity map. Furthermore, Sc(p) is set to 1 to the SynthText data since the words are annotated to 

the character-level. 

As for the training of the important hyperparameters, the batch size is set to be 4 and the 

number of iterations is 163 iterations at each epoch. The learning rate of each epoch is: 

• Epoch 0 – 105  : 1 E -4 

• Epoch 106 – 153 : 1 E -5 

• Epoch 154 – 159 : 5 E -6 

with no momentum method applied (the value is set to 1.0). The number of epochs is increased 

until the performance target is achieved, which occurs at about 159. 
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5.3 Fine Tuning Result 

Based on the explained training method, defined hyperparameters, and pre-trained model, 

the fine tuning of the predictive model is commenced. The results of the training and testing 

performance at each epoch are displayed in Figure 5.1 to Figure 5.3 and summarized in  
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Table 5.1. The result shows that there are high fluctuations in performance during the 

training. However, the detection performance was better from one epoch to another epoch 

generally way. 

 

 

Figure 5.1. F-Score of Batch 4 Training Result 

 

 

Figure 5.2. Precision of Batch 4 Training Result 
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Figure 5.3. Recall of Batch 4 Training Result 

 

 

Figure 5.4. Cost Function Value of Batch 4 Training Result 
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Table 5.1. Training and Test Performance (Batch Size = 4) 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

0 32.58 48.32 30.31 - 50.01 73.74 37.83 

1 60.65 71.36 56.38 0.0248 69.39 85.78 58.26 

2 69.10 78.01 65.63 0.01891 72.05 86.27 61.85 

3 55.61 73.13 48.12 0.02397 51.33 72.82 39.63 

4 56.15 77.26 48.33 0.01887 59.32 83.09 46.13 

5 61.74 70.27 58.02 0.0224 57.89 65.15 52.09 

6 66.33 73.34 62.20 0.02096 68.05 79.03 59.74 

7 65.57 71.90 62.05 0.02055 72.35 78.99 66.74 

8 46.13 62.64 39.12 0.02002 43.67 69.98 31.74 

9 72.68 82.26 67.62 0.01489 78.37 89.56 69.66 

10 72.91 80.62 68.58 0.01745 76.52 85.92 68.97 

11 44.65 59.90 39.17 0.02455 38.14 54.46 29.34 

12 65.01 71.45 61.76 0.02208 68.96 76.94 62.48 

13 67.54 75.92 63.28 0.01997 78.17 89.15 69.60 

14 65.59 69.01 64.08 0.01974 69.91 73.72 66.48 

15 58.34 65.66 55.00 0.01814 54.83 62.69 48.73 

16 69.33 76.54 65.03 0.02157 71.48 84.63 61.86 

17 60.12 63.09 59.02 0.02047 67.55 70.40 64.92 

18 52.09 67.12 46.28 0.01866 42.09 58.26 32.94 

19 67.29 76.72 62.85 0.01763 77.98 91.77 67.80 

20 71.46 74.98 69.76 0.01757 77.45 84.62 71.40 

21 56.32 60.54 54.53 0.01859 38.77 38.14 39.42 

22 68.67 74.46 65.31 0.0155 80.70 89.41 73.54 

23 63.57 74.39 58.28 0.01782 58.32 69.58 50.19 

24 63.75 68.43 61.35 0.01842 63.95 66.53 61.56 

25 63.61 74.45 58.27 0.01917 64.90 85.64 52.25 

26 59.37 66.56 55.11 0.01947 53.52 67.12 44.50 

27 59.27 62.85 57.30 0.01872 58.85 61.30 56.59 

28 66.10 70.19 63.76 0.01637 75.00 80.50 70.21 

29 68.23 76.72 63.22 0.01672 76.47 89.27 66.88 

30 63.39 70.49 59.62 0.01662 68.49 75.51 62.67 

31 58.96 66.48 55.02 0.01737 40.15 50.77 33.20 

32 72.27 77.53 68.98 0.01669 78.25 86.92 71.16 

33 62.52 71.20 57.70 0.01633 60.73 70.37 53.41 

34 63.44 69.17 60.32 0.01706 73.77 86.68 64.21 

35 76.60 82.07 73.41 0.01405 80.80 88.22 74.53 

36 58.04 60.30 57.56 0.01529 42.11 41.49 42.75 

37 68.63 73.86 65.47 0.01368 81.75 90.53 74.52 

38 71.42 78.91 67.12 0.01493 73.77 86.35 64.39 

39 57.58 63.79 54.30 0.01524 48.35 52.04 45.14 

40 70.94 78.38 66.50 0.01725 77.99 89.08 69.36 
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Table 5.1. continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

41 57.33 64.75 54.00 0.01599 46.16 50.49 42.51 

42 74.49 80.31 71.12 0.01794 78.82 86.51 72.38 

43 76.76 80.48 74.57 0.01597 76.07 83.79 69.65 

44 45.54 52.49 42.78 0.01501 39.50 38.19 40.90 

45 63.54 67.38 61.44 0.01438 76.54 86.00 68.95 

46 75.91 84.61 70.92 0.01332 68.96 85.79 57.65 

47 72.23 75.94 70.29 0.01584 71.31 74.38 68.49 

48 49.47 52.61 48.27 0.01805 50.32 48.62 52.14 

49 75.19 82.16 70.85 0.01425 79.15 89.00 71.27 

50 69.29 79.92 64.11 0.01326 59.84 81.00 47.44 

51 56.97 60.85 54.94 0.01503 60.18 59.62 60.76 

52 68.13 76.45 63.45 0.01747 67.28 79.60 58.26 

53 59.83 63.26 58.71 0.01655 54.86 53.13 56.70 

54 66.88 75.81 61.58 0.01735 65.00 77.69 55.87 

55 68.04 70.26 67.26 0.01483 75.92 81.45 71.09 

56 61.09 63.74 60.20 0.01729 53.47 51.30 55.84 

57 73.98 81.30 69.42 0.01369 74.26 85.91 65.39 

58 66.39 73.01 62.95 0.01484 77.94 87.10 70.53 

59 60.41 66.14 57.41 0.01517 52.69 54.85 50.69 

60 79.14 84.69 75.54 0.01396 84.10 92.11 77.36 

61 72.46 76.88 69.91 0.01461 73.24 79.82 67.67 

62 53.46 58.74 50.93 0.01542 50.97 50.87 51.08 

63 76.35 82.26 72.72 0.01387 78.94 87.69 71.78 

64 74.17 78.67 71.37 0.01136 68.35 75.09 62.72 

65 61.12 64.66 60.16 0.01487 66.70 68.37 65.11 

66 69.52 74.31 66.44 0.01516 69.78 76.66 64.04 

67 66.32 69.55 64.49 0.01535 65.35 66.01 64.71 

68 49.42 55.13 46.16 0.01559 44.91 49.01 41.45 

69 76.44 82.11 72.83 0.01342 81.26 90.29 73.87 

70 76.58 81.59 73.56 0.01327 80.02 88.19 73.23 

71 65.82 73.38 61.39 0.01576 55.27 66.22 47.43 

72 67.39 71.31 64.89 0.01561 68.33 72.95 64.26 

73 66.75 75.26 61.71 0.01604 77.21 88.42 68.52 

74 70.28 72.14 69.39 0.01576 69.85 73.81 66.29 

75 73.82 77.47 71.64 0.01484 76.35 83.42 70.39 

76 60.18 63.91 57.97 0.0173 56.05 57.00 55.13 

77 74.07 79.32 70.78 0.01692 79.23 87.75 72.22 

78 74.05 78.00 71.66 0.0137 82.65 91.01 75.69 

79 67.87 73.25 64.74 0.01567 60.58 69.19 53.87 

80 69.96 72.95 68.62 0.0165 60.40 61.29 59.53 
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Table 5.1. continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

81 67.67 75.79 63.24 0.01221 76.06 88.41 66.74 

82 78.49 81.26 76.85 0.01146 80.40 85.74 75.69 

83 62.56 65.40 61.50 0.01231 48.06 51.93 44.73 

84 74.71 81.11 70.86 0.0156 83.48 93.15 75.63 

85 57.33 60.63 55.71 0.01788 44.19 43.58 44.82 

86 81.02 85.65 78.03 0.01506 83.46 92.54 76.00 

87 66.77 71.26 64.07 0.01498 66.21 75.91 58.71 

88 64.28 68.71 62.26 0.01549 57.64 56.55 58.76 

89 72.82 78.53 69.25 0.01589 62.72 72.56 55.23 

90 67.80 73.54 65.38 0.01373 68.84 72.92 65.19 

91 65.28 70.32 62.74 0.01549 53.69 54.26 53.14 

92 74.81 83.43 70.18 0.01536 82.54 92.53 74.50 

93 68.17 71.74 66.18 0.01535 69.41 73.86 65.47 

94 60.20 64.52 58.16 0.01639 53.15 49.91 56.85 

95 75.08 82.13 70.82 0.01458 70.15 82.98 60.76 

96 68.37 74.46 64.72 0.01533 78.72 85.49 72.94 

97 73.15 76.36 71.15 0.01881 72.48 78.03 67.67 

98 55.85 57.36 56.24 0.01557 50.83 46.12 56.61 

99 77.64 82.55 74.30 0.01337 74.44 83.36 67.25 

100 77.46 80.61 75.62 0.01265 83.72 88.27 79.61 

101 70.30 72.49 69.07 0.01387 61.25 64.71 58.14 

102 58.74 61.70 58.08 0.0145 60.02 58.20 61.95 

103 74.05 79.14 70.74 0.014 70.19 77.39 64.21 

104 81.10 85.36 78.18 0.01406 82.90 90.33 76.59 

105 55.18 57.69 54.00 0.01526 38.92 39.58 38.28 

106 78.57 83.25 75.52 0.01307 85.12 91.81 79.34 

107 68.91 73.77 66.29 0.01338 82.55 89.62 76.51 

108 67.81 73.86 64.14 0.01605 52.38 59.24 46.95 

109 65.93 70.98 63.05 0.01669 69.74 75.19 65.03 

110 76.50 83.52 71.74 0.01607 64.78 74.95 57.04 

111 60.31 64.64 57.67 0.01711 65.50 68.92 62.40 

112 81.52 85.72 78.77 0.01382 79.14 85.26 73.84 

113 75.22 78.65 73.05 0.01431 72.25 77.62 67.57 

114 61.57 63.95 60.38 0.01474 63.92 65.36 62.54 

115 73.93 78.68 71.04 0.01585 64.74 74.39 57.30 

116 72.06 75.03 70.22 0.01443 72.92 77.06 69.20 

117 68.33 71.58 66.42 0.01756 58.13 63.97 53.26 

118 77.09 81.34 74.23 0.01533 79.73 85.98 74.32 

119 56.42 62.27 52.88 0.01792 47.51 54.65 42.03 

120 83.91 87.26 81.65 0.01113 88.13 92.80 83.91 
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Table 5.1. continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

121 80.33 84.05 77.78 0.01032 80.87 86.37 76.03 

122 51.41 54.21 49.85 0.01378 46.34 48.23 44.58 

123 84.82 88.64 82.24 0.01363 87.16 93.14 81.90 

124 62.26 64.54 61.46 0.01383 47.03 46.71 47.36 

125 73.78 77.86 71.42 0.01556 86.17 91.96 81.06 

126 55.50 58.29 54.03 0.01629 40.89 41.81 40.02 

127 82.84 86.31 80.62 0.0121 87.70 92.74 83.18 

128 67.74 70.34 66.90 0.01288 74.20 78.62 70.24 

129 67.18 69.95 65.66 0.01366 61.13 60.85 61.41 

130 66.35 71.51 64.41 0.01571 67.74 77.26 60.31 

131 68.41 72.89 65.29 0.01405 63.03 66.42 59.97 

132 66.11 71.36 63.80 0.01559 64.62 73.91 57.40 

133 80.84 83.10 79.26 0.01404 82.14 86.18 78.47 

134 47.59 50.72 45.82 0.016 37.80 38.96 36.70 

135 85.91 88.82 83.84 0.01189 88.04 93.43 83.23 

136 76.55 79.52 74.72 0.0124 74.73 79.84 70.24 

137 55.45 56.87 55.38 0.014 53.53 50.95 56.38 

138 79.22 83.10 76.78 0.01328 77.22 85.41 70.47 

139 75.27 78.27 73.26 0.01231 67.25 71.13 63.78 

140 59.68 61.20 59.77 0.0139 60.49 57.81 63.44 

141 77.77 82.83 74.42 0.01339 65.61 73.68 59.13 

142 77.78 80.11 76.48 0.01209 82.69 87.46 78.41 

143 46.82 49.62 45.63 0.01428 34.88 33.01 36.96 

144 80.37 83.62 78.41 0.01177 87.26 93.41 81.86 

145 79.64 83.06 77.43 0.01155 74.39 79.35 70.02 

146 55.04 57.90 53.74 0.01387 55.97 58.17 53.92 

147 77.95 79.87 76.90 0.01308 74.15 75.38 72.96 

148 70.84 73.48 69.53 0.01473 61.18 62.00 60.37 

149 66.59 73.62 62.80 0.01532 66.22 76.60 58.31 

150 70.96 73.06 69.70 0.01499 64.13 63.31 64.97 

151 70.87 76.36 67.61 0.0138 64.01 72.15 57.52 

152 77.73 79.57 76.62 0.0129 82.67 85.90 79.66 

153 52.38 55.23 51.22 0.0159 43.71 41.95 45.63 

154 83.32 86.14 81.49 0.01169 87.21 92.05 82.85 

155 80.29 83.85 77.88 0.0115 77.35 83.25 72.23 

156 61.51 64.25 60.30 0.01382 60.88 62.13 59.68 

157 79.15 83.08 76.78 0.01476 78.43 82.55 74.69 

158 47.83 52.02 45.29 0.01594 39.26 40.57 38.04 

159 84.45 86.24 83.25 0.01292 88.80 92.72 85.19 
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A comparison between the testing results of pretrained model and the testing results of the 

fine-tuned model are shown at Figure 5.5. Based on the results, the method of fine tuning has been 

successfully completed and produced significantly better performance than the pre-trained model. 

It is also shown that the recall is increased significantly. However, there are some line symbols 

that are not detected as texts because it is harder to differentiate these lines from text in structural 

drawings that typically will have a huge number of lines. 

 

Before Fine Tuning (Epoch 0) 

[Blue = Ground Truth; Green = Prediction] 

After Fine Tuning (Epoch 159) 

[Blue = Ground Truth; Green = Prediction] 

  

  

  

  

  

  
 

Figure 5.5. Comparison of Text Detection Result 
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Figure 5.5. Continued 

 

Before Fine Tuning (Epoch 0) 

[Blue = Ground Truth; Green = Prediction] 

After Fine Tuning (Epoch 159) 

[Blue = Ground Truth; Green = Prediction] 
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Figure 5.5. Continued 

 

Before Fine Tuning (Epoch 0) 

[Blue = Ground Truth; Green = Prediction] 

After Fine Tuning (Epoch 159) 

[Blue = Ground Truth; Green = Prediction] 
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5.4 Learned Lesson in Training 

Acceptable performance in the predictive modelling was not obtained easily. There were 

several training failures beforehand that need to be highlighted and thus provide the good 

foundation for future work in the detection of text in structural drawings. 

At first, the structural drawings were trained directly without any considerations given to 

the input image size. Since the training were limited to the GPU memory, we found that the image 

must be resized to a more appropriate dimension. This input dimension needs to be determined 

based on the structural drawings dimension since the structural drawings usually have a 

considerably larger dimension. The resizing from a higher dimension to a smaller dimension can 

affect the quality of the words’ resolution, making it hard for the predictive model to learn and 

thus yielding unacceptable recall values. This issue can be easily solved by preprocessing the 

structural drawings through implementing a partitioning of the structural drawings into smaller 

parts.  

 

 

Figure 5.6. Output of Text Detection Using Original Dimension of Structural Drawing 
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Second, there were some difficulties for the initial model to learn the vertical oriented 

words and “noisy” surroundings due to the circle or lines nearby. This issue can be overcome by 

using data augmentation in the training by rotating the words by 45 degrees and 90 degrees, so the 

predictive model can learn to detect the words in various orientations. 

 

   

Figure 5.7. Sample of Initial Predictive Modelling 

 

 

Third, it was hard to determine the appropriate training batch size and correct learning rate. In 

general trend, higher batch size yields more stable performance in training but requires more 

GPU memory. Its learning rate is usually larger compared to the smaller batch size. The 

determination of training batch size with the limited GPU memory was solved by iterating the 

training batch size values until the maximum batch size value was obtained and yielding no error 

in training process. Then, the learning rate was iterated until the training performance and testing 

performance were not fluctuating. Using higher batches does not guarantee higher performance 

of predictive modelling. The results of the training and testing performance with batch size of 6 

and constant learning rate of 1E-6 at each epoch are displayed in Figure 5.8 to Figure 5.10 and 

summarized in   
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Table 5.2. The result shows that there were lower fluctuations in performance during the 

training but did not achieve better performance. 

 

 

 

Figure 5.8. F-Score of Batch 6 Training Result 

 

 

Figure 5.9. Precision of Batch 6 Training Result 
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Figure 5.10. Recall of Batch 6 Training Result 

 

 

Figure 5.11. Precision of Batch 6 Training Result 
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Table 5.2. Training and Test Performance (Batch Size = 6) 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

0 32.59 48.32 30.32 - 50.01 73.74 37.83 

1 36.54 56.94 32.14 0.04704 60.38 86.14 46.48 

2 45.01 59.04 41.01 0.04122 64.88 80.70 54.24 

3 54.56 61.94 53.95 0.03572 68.58 75.67 62.70 

4 61.40 68.75 60.57 0.03071 73.31 80.04 67.62 

5 65.35 72.62 63.98 0.02771 73.74 79.62 68.67 

6 63.07 73.49 60.14 0.02723 70.07 77.61 63.86 

7 62.67 74.16 59.01 0.02569 70.66 79.62 63.50 

8 60.17 72.97 56.23 0.02467 67.36 77.27 59.69 

9 60.05 73.38 55.56 0.02496 67.89 78.96 59.55 

10 61.69 74.37 57.17 0.02206 69.40 80.57 60.95 

11 58.06 72.35 53.21 0.02226 64.58 77.75 55.23 

12 61.84 74.82 57.00 0.0206 70.06 82.63 60.80 

13 57.51 71.82 52.57 0.02099 63.15 75.79 54.12 

14 62.65 75.33 57.66 0.02053 69.58 82.46 60.18 

15 58.76 72.46 53.66 0.02129 64.39 76.54 55.56 

16 64.68 75.84 60.00 0.01758 71.18 83.04 62.28 

17 57.60 71.68 52.29 0.02041 61.68 74.43 52.65 

18 65.45 76.07 60.75 0.01761 72.42 85.11 63.02 

19 58.93 72.24 53.62 0.01878 62.87 75.23 54.00 

20 65.25 76.46 60.22 0.01831 71.03 83.95 61.56 

21 62.39 73.71 57.48 0.01783 65.30 75.60 57.48 

22 65.09 76.69 59.99 0.01844 70.50 83.59 60.95 

23 62.87 74.37 57.88 0.01755 65.39 76.22 57.25 

24 65.14 76.98 59.87 0.01916 69.21 81.61 60.08 

25 61.09 74.01 55.42 0.01662 62.96 76.32 53.59 

26 67.68 77.07 63.11 0.01835 72.27 83.41 63.76 

27 58.45 71.16 52.78 0.0156 58.35 71.68 49.20 

28 67.67 76.60 63.29 0.01695 73.96 86.10 64.82 

29 60.01 72.86 54.32 0.01669 59.97 72.99 50.88 

30 67.41 77.32 62.51 0.01788 72.44 85.08 63.07 

31 59.91 72.09 54.34 0.01593 59.98 72.25 51.27 

32 67.64 76.36 63.22 0.0173 72.90 84.75 63.95 

33 58.47 72.13 52.34 0.01578 57.10 71.00 47.75 

34 69.21 78.00 64.80 0.01826 73.56 84.58 65.08 

35 60.29 72.13 54.78 0.01459 59.83 71.41 51.48 

36 69.84 78.19 65.52 0.01733 74.46 84.57 66.51 

37 56.88 69.75 50.80 0.0149 54.10 67.55 45.11 

38 68.95 76.71 64.99 0.01592 74.79 85.97 66.19 

39 61.48 73.42 55.93 0.01611 60.50 72.57 51.88 

40 68.24 78.06 63.23 0.01697 72.22 84.64 62.97 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

41 59.03 71.36 53.14 0.01529 57.78 70.17 49.12 

42 68.67 76.83 64.41 0.01597 73.94 85.42 65.18 

43 58.53 72.28 52.25 0.01509 56.70 70.68 47.33 

44 69.81 78.45 65.31 0.01738 73.92 85.04 65.37 

45 60.29 72.13 54.78 0.01459 59.83 71.41 51.48 

46 69.84 78.19 65.52 0.01733 74.46 84.57 66.51 

47 56.88 69.75 50.80 0.0149 54.10 67.55 45.11 

48 68.95 76.71 64.99 0.01592 74.79 85.97 66.19 

49 61.48 73.42 55.93 0.01611 60.50 72.57 51.88 

50 68.24 78.06 63.23 0.01697 72.22 84.64 62.97 

51 59.03 71.36 53.14 0.01529 57.78 70.17 49.12 

52 68.67 76.83 64.41 0.01597 73.94 85.42 65.18 

53 58.53 72.28 52.25 0.01509 56.70 70.68 47.33 

54 69.81 78.45 65.31 0.01738 73.92 85.04 65.37 

55 59.39 71.36 53.64 0.01515 57.32 69.28 48.87 

56 69.64 77.84 65.26 0.01672 74.35 84.91 66.13 

57 61.44 72.94 55.83 0.01493 60.75 72.26 52.40 

58 70.00 78.04 65.69 0.0169 74.69 84.88 66.69 

59 55.70 69.88 48.94 0.01438 53.10 68.04 43.54 

60 69.59 76.92 65.65 0.01677 75.53 86.19 67.22 

61 62.08 73.53 56.46 0.01482 61.46 73.09 53.02 

62 69.76 78.47 65.08 0.01569 73.38 84.67 64.74 

63 58.78 71.20 52.55 0.01445 56.85 70.16 47.78 

64 70.01 78.30 65.54 0.01668 74.02 85.46 65.29 

65 58.37 70.79 52.27 0.01446 55.86 68.64 47.09 

66 70.68 78.82 66.22 0.01619 74.49 85.20 66.17 

67 60.92 72.03 55.22 0.0153 58.81 70.04 50.68 

68 69.91 78.27 65.40 0.01671 73.31 84.45 64.77 

69 59.20 70.83 53.16 0.01469 58.19 70.19 49.69 

70 70.55 78.03 66.36 0.01492 74.61 84.86 66.58 

71 62.18 72.53 56.88 0.01468 60.68 70.27 53.39 

72 70.09 79.01 65.29 0.01606 74.14 85.88 65.23 

73 61.30 72.71 55.62 0.01436 59.84 71.17 51.62 

74 71.42 79.76 66.84 0.01658 74.24 85.09 65.85 

75 55.57 68.86 49.04 0.01369 52.69 67.44 43.23 

76 70.09 76.80 66.38 0.01523 75.92 86.37 67.73 

77 59.17 70.92 53.31 0.01361 56.50 67.85 48.41 

78 72.39 80.54 67.86 0.01553 75.48 86.37 67.03 

79 58.56 70.40 52.43 0.01415 55.59 67.30 47.35 

80 71.04 77.82 67.26 0.01528 76.65 86.37 68.89 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

81 61.60 72.53 56.00 0.01454 59.88 70.21 52.20 

82 71.77 78.89 67.72 0.01503 75.21 85.21 67.32 

83 61.63 71.91 56.16 0.0144 59.28 69.04 51.95 

84 72.06 79.56 67.70 0.01594 75.48 86.13 67.17 

85 57.35 69.01 51.34 0.01438 53.66 65.77 45.32 

86 72.54 79.60 68.57 0.01525 76.36 86.68 68.23 

87 58.85 70.27 52.88 0.01297 55.69 66.92 47.68 

88 72.83 78.96 69.32 0.01548 76.67 85.67 69.39 

89 56.53 67.91 50.59 0.01333 51.94 63.53 43.92 

90 72.01 78.36 68.39 0.01435 76.80 86.98 68.75 

91 59.81 70.92 54.03 0.01389 55.67 66.22 48.02 

92 71.83 79.25 67.54 0.01501 75.99 86.88 67.52 

93 59.35 70.39 53.53 0.01366 56.46 67.32 48.62 

94 72.25 78.90 68.44 0.0147 76.07 86.29 68.01 

95 56.25 68.27 50.07 0.01233 52.39 64.60 44.07 

96 73.27 78.68 70.21 0.01476 77.35 86.12 70.21 

97 57.49 68.19 51.82 0.01323 52.11 62.92 44.47 

98 72.47 78.82 68.83 0.01389 76.91 87.18 68.79 

99 59.54 70.47 53.81 0.01417 55.21 65.96 47.48 

100 72.04 78.86 68.06 0.01463 76.09 86.49 67.93 

101 57.58 68.65 51.75 0.01314 53.33 64.24 45.59 

102 72.12 78.34 68.54 0.01386 76.50 86.57 68.52 

103 57.40 69.06 51.39 0.01317 52.55 64.35 44.41 

104 73.44 80.14 69.56 0.01538 76.54 86.54 68.62 

105 59.16 69.31 53.62 0.01353 54.04 63.62 46.96 

106 73.06 79.89 69.05 0.015 76.26 86.01 68.49 

107 58.39 68.72 52.80 0.01283 54.64 64.69 47.30 

108 72.65 78.55 69.23 0.01461 77.01 86.39 69.47 

109 55.26 65.84 49.56 0.01298 50.02 61.05 42.36 

110 72.45 78.32 69.03 0.01358 77.03 87.02 69.10 

111 61.91 70.60 57.10 0.01362 58.79 67.57 52.03 

112 72.69 80.44 68.18 0.01525 74.90 85.82 66.45 

113 59.09 69.46 53.48 0.01338 54.55 65.06 46.96 

114 74.38 80.83 70.60 0.01525 77.18 87.07 69.31 

115 53.93 66.06 47.63 0.01268 46.54 59.69 38.14 

116 72.47 77.88 69.24 0.01315 76.98 86.25 69.50 

117 63.01 71.41 58.30 0.01385 58.25 66.49 51.83 

118 73.05 80.59 68.57 0.01489 75.43 85.89 67.23 

119 58.65 69.04 52.97 0.01314 53.09 63.96 45.39 

120 74.62 80.65 71.04 0.0148 77.42 86.96 69.77 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

121 53.53 65.62 47.25 0.01279 46.48 59.68 38.05 

122 72.45 77.72 69.27 0.01418 76.78 85.92 69.39 

123 57.72 67.62 52.29 0.01259 52.66 62.32 45.59 

124 74.69 81.38 70.70 0.01442 77.04 87.04 69.10 

125 54.86 65.58 48.99 0.0119 49.18 60.00 41.67 

126 74.13 78.83 71.32 0.01403 78.16 86.15 71.53 

127 55.64 65.63 50.13 0.01265 48.34 58.03 41.43 

128 73.57 79.19 70.27 0.0135 77.62 87.00 70.06 

129 59.20 68.45 54.00 0.01311 54.00 63.57 46.93 

130 73.40 80.02 69.40 0.01404 76.29 86.60 68.17 

131 55.20 65.21 49.64 0.01246 49.96 60.12 42.73 

132 73.22 78.63 70.00 0.0133 76.68 86.07 69.13 

133 56.36 66.77 50.70 0.01243 49.73 60.36 42.28 

134 74.50 80.06 71.16 0.0132 77.00 86.29 69.52 

135 61.30 69.57 56.59 0.01296 56.67 64.67 50.43 

136 74.32 81.16 70.16 0.01465 76.29 86.46 68.26 

137 57.34 66.94 51.95 0.01294 51.16 61.04 44.04 

138 75.05 80.44 71.83 0.01447 77.61 86.61 70.31 

139 53.13 64.31 47.15 0.0121 45.01 56.74 37.30 

140 72.84 77.90 69.77 0.0138 76.85 85.85 69.55 

141 58.43 67.32 53.39 0.01248 53.02 62.31 46.14 

142 74.88 81.07 71.16 0.01413 77.19 86.71 69.55 

143 55.18 65.32 49.48 0.01253 47.81 58.37 40.48 

144 73.27 78.30 70.26 0.01384 77.82 86.22 70.92 

145 60.91 69.45 56.07 0.01189 57.71 66.78 50.80 

146 74.99 80.04 71.93 0.01413 78.29 86.14 71.75 

147 54.82 64.51 49.38 0.01217 46.22 56.18 39.26 

148 74.13 79.51 70.89 0.01297 77.95 87.05 70.58 

149 58.33 67.39 53.19 0.01285 52.82 62.34 45.82 

150 73.76 79.71 70.13 0.01359 77.02 86.69 69.29 

151 55.02 64.65 49.67 0.012 48.78 58.66 41.75 

152 73.95 79.13 70.79 0.01283 76.94 86.18 69.49 

153 57.76 67.51 52.36 0.01226 50.27 60.67 42.91 

154 74.88 80.10 71.65 0.01414 77.36 86.43 70.02 

155 58.51 67.21 53.47 0.01156 51.72 60.24 45.31 

156 75.15 79.79 72.35 0.01394 77.93 85.39 71.67 

157 53.19 62.67 47.91 0.01191 44.36 54.07 37.60 

158 74.28 79.25 71.24 0.01257 77.91 86.59 70.80 

159 59.42 68.18 54.40 0.01304 53.46 62.50 46.70 

160 74.09 80.19 70.33 0.01351 77.05 86.54 69.44 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

161 54.32 63.96 48.85 0.01172 47.03 57.01 40.03 

162 74.39 79.17 71.46 0.01268 77.46 86.24 70.31 

163 57.47 66.78 52.30 0.01209 49.94 59.95 42.80 

164 75.30 80.52 72.04 0.01405 77.04 85.93 69.82 

165 57.94 66.43 52.99 0.0124 50.55 59.22 44.10 

166 75.25 80.78 71.82 0.01387 77.63 86.52 70.40 

167 56.24 64.72 51.32 0.01231 50.75 59.52 44.23 

168 75.01 79.65 72.15 0.01336 78.08 86.34 71.25 

169 54.93 64.05 49.78 0.01225 47.06 56.74 40.21 

170 74.31 79.35 71.23 0.0127 77.85 86.82 70.56 

171 61.18 68.78 56.78 0.01246 57.28 65.57 50.85 

172 75.04 81.16 71.22 0.01425 76.92 86.61 69.18 

173 56.10 65.53 50.76 0.01197 48.87 59.21 41.61 

174 76.02 80.90 72.95 0.01429 78.35 86.82 71.38 

175 53.28 63.07 47.78 0.01133 45.56 56.47 38.18 

176 73.94 78.45 71.15 0.01321 77.49 86.21 70.37 

177 58.34 66.41 53.62 0.01226 53.08 62.19 46.30 

178 75.73 81.52 72.07 0.01354 77.54 86.59 70.19 

179 54.88 64.16 49.49 0.01206 45.45 55.83 38.33 

180 74.28 78.77 71.49 0.01322 77.83 85.77 71.24 

181 60.62 68.67 55.95 0.01281 55.94 64.76 49.23 

182 75.49 80.62 72.25 0.0135 77.29 85.41 70.58 

183 57.02 65.28 52.11 0.01186 49.90 58.92 43.28 

184 75.39 79.86 72.58 0.01385 77.36 85.55 70.61 

185 55.83 64.27 50.93 0.01294 48.47 57.82 41.72 

186 76.05 80.85 73.04 0.01255 77.75 85.79 71.08 

187 59.55 67.22 55.00 0.01211 52.85 61.17 46.53 

188 75.64 81.09 72.15 0.01367 77.41 86.53 70.03 

189 55.17 64.77 49.81 0.01222 47.30 58.17 39.86 

190 76.05 80.57 73.15 0.01357 77.86 86.18 71.00 

191 53.41 63.25 47.86 0.0114 45.25 56.77 37.62 

192 74.19 78.43 71.51 0.01318 77.66 85.89 70.87 

193 58.35 66.17 53.77 0.01205 52.78 61.64 46.14 

194 75.96 81.51 72.40 0.01341 77.48 86.24 70.34 

195 54.27 63.46 48.92 0.01171 44.80 55.64 37.49 

196 74.60 78.84 71.91 0.01291 78.00 85.68 71.58 

197 60.76 68.54 56.18 0.01266 56.38 65.12 49.71 

198 76.06 81.04 72.84 0.01337 77.45 85.41 70.85 

199 56.41 64.49 51.55 0.01161 49.39 58.69 42.64 

200 75.45 79.61 72.79 0.01347 77.40 85.45 70.74 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

201 56.12 64.11 51.43 0.0111 49.03 58.27 42.32 

202 75.98 79.75 73.60 0.01321 77.87 84.79 71.99 

203 54.65 62.89 49.82 0.0117 46.03 55.59 39.28 

204 75.76 80.61 72.71 0.01281 78.00 86.40 71.09 

205 57.14 65.56 52.20 0.01183 49.85 59.46 42.91 

206 75.32 80.50 71.98 0.01284 77.18 86.06 69.97 

207 55.51 63.92 50.64 0.01181 49.31 58.52 42.60 

208 75.78 80.34 72.86 0.01222 77.53 85.94 70.63 

209 56.09 64.63 51.16 0.01142 48.49 58.19 41.56 

210 75.93 80.29 73.13 0.01332 77.62 85.81 70.85 

211 58.69 66.24 54.17 0.01227 51.61 60.21 45.16 

212 76.18 81.20 72.87 0.01334 77.12 85.36 70.32 

213 55.62 63.73 50.77 0.0118 49.34 58.75 42.52 

214 76.02 80.30 73.25 0.01277 78.40 86.18 71.91 

215 54.81 63.18 49.92 0.01171 46.95 56.79 40.02 

216 75.27 79.87 72.33 0.0138 77.94 86.33 71.05 

217 58.84 66.30 54.36 0.01203 52.74 61.79 46.00 

218 76.23 81.26 72.94 0.01317 77.50 85.82 70.64 

219 54.47 63.47 49.22 0.01177 46.11 56.77 38.83 

220 75.73 80.45 72.67 0.01367 77.75 86.10 70.88 

221 53.10 62.89 47.60 0.0105 43.77 55.49 36.14 

222 76.24 80.01 73.87 0.01294 78.26 84.93 72.56 

223 54.80 62.93 50.09 0.01171 46.08 55.97 39.16 

224 76.05 80.63 73.09 0.01226 78.33 86.50 71.58 

225 57.57 65.90 52.72 0.01208 49.54 59.26 42.56 

226 75.52 80.59 72.23 0.01274 77.35 85.86 70.37 

227 54.72 63.31 49.75 0.01156 47.18 57.25 40.13 

228 75.66 80.13 72.76 0.01189 77.54 85.82 70.72 

229 56.37 65.05 51.36 0.01149 47.54 57.70 40.42 

230 76.41 80.90 73.46 0.01316 77.54 85.67 70.82 

231 57.61 65.03 53.11 0.01201 50.09 58.85 43.60 

232 76.50 81.46 73.22 0.01315 77.46 85.63 70.71 

233 55.14 63.30 50.25 0.01147 48.84 58.69 41.82 

234 76.29 80.44 73.57 0.0126 78.36 85.94 72.01 

235 54.93 62.99 50.13 0.0117 48.02 58.06 40.93 

236 75.77 80.49 72.75 0.01353 78.14 86.35 71.37 

237 57.36 64.73 52.91 0.01172 51.53 60.74 44.74 

238 76.56 81.30 73.44 0.01278 77.80 85.97 71.05 

239 54.29 62.73 49.30 0.0116 46.61 56.92 39.45 

240 76.09 80.47 73.22 0.01342 77.94 85.95 71.30 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

241 53.65 62.98 48.29 0.01046 44.98 57.01 37.14 

242 76.59 80.31 74.20 0.01259 78.24 84.91 72.54 

243 55.08 63.24 50.34 0.01175 45.56 56.09 38.36 

244 76.50 81.01 73.60 0.01222 78.50 86.24 72.04 

245 55.64 64.05 50.73 0.01178 48.04 58.29 40.85 

246 76.17 80.89 73.08 0.01246 77.60 85.73 70.88 

247 54.48 62.79 49.62 0.01145 46.99 56.96 39.98 

248 76.16 80.41 73.35 0.0118 77.79 85.69 71.22 

249 56.73 65.10 51.84 0.01153 47.57 58.06 40.29 

250 76.69 81.06 73.81 0.01296 77.64 85.66 71.00 

251 57.02 64.51 52.46 0.0119 49.74 58.93 43.04 

252 76.78 81.42 73.69 0.01294 77.56 85.54 70.95 

253 54.31 62.69 49.29 0.01119 48.15 58.89 40.72 

254 76.40 80.17 73.91 0.0122 78.75 85.89 72.70 

255 55.52 63.06 50.93 0.0116 49.13 59.33 41.93 

256 76.02 80.52 73.12 0.01321 77.80 85.78 71.17 

257 56.42 63.87 51.88 0.01153 50.15 60.03 43.07 

258 76.83 81.11 74.00 0.01251 78.21 85.94 71.75 

259 54.23 62.37 49.35 0.01146 46.97 57.60 39.65 

260 76.10 80.58 73.21 0.013 77.78 85.52 71.32 

261 52.52 61.76 47.16 0.01045 44.22 56.94 36.14 

262 76.73 80.14 74.52 0.01254 78.25 84.63 72.77 

263 55.82 63.78 51.11 0.0119 47.96 59.10 40.35 

264 76.40 80.97 73.43 0.01216 78.28 86.17 71.72 

265 54.67 63.04 49.67 0.01158 47.80 58.98 40.18 

266 76.14 80.31 73.40 0.01198 77.87 85.52 71.48 

267 55.49 63.48 50.77 0.01169 48.94 58.93 41.85 

268 76.61 80.71 73.89 0.01184 77.62 85.35 71.17 

269 56.07 64.04 51.33 0.01119 47.09 58.01 39.63 

270 77.05 81.08 74.38 0.01263 77.74 85.45 71.30 

271 57.53 65.04 52.94 0.01195 50.93 60.78 43.83 

272 76.71 81.18 73.71 0.01283 77.49 85.24 71.03 

273 54.09 62.41 49.02 0.01114 47.39 58.72 39.73 

274 76.55 80.06 74.23 0.01194 78.86 85.77 72.97 

275 55.77 63.14 51.24 0.01142 49.11 59.46 41.83 

276 75.95 80.21 73.19 0.0129 77.81 85.54 71.35 

277 56.79 63.88 52.41 0.01145 50.80 60.70 43.68 

278 76.90 81.10 74.12 0.01241 78.12 85.79 71.70 

279 54.48 62.21 49.79 0.01128 47.18 58.19 39.68 

280 76.42 80.73 73.58 0.01277 77.55 85.34 71.06 
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Table 5.2. Continued 

Epoch 
Training (Pure) - Initial Score Test - Initial Score 

F-Score Precision Recall Cost Function F-Score Precision Recall 

281 51.88 60.75 46.71 0.01031 43.51 56.75 35.27 

282 76.68 79.80 74.61 0.01209 78.78 85.03 73.39 

283 56.36 63.94 51.88 0.01212 49.24 60.28 41.62 

284 76.64 80.98 73.80 0.01212 78.18 85.85 71.77 

285 54.83 63.09 49.86 0.01149 46.75 58.19 39.07 

286 76.42 80.36 73.78 0.01191 77.69 85.19 71.40 

287 56.92 64.32 52.44 0.01172 50.49 60.37 43.39 

288 76.86 81.14 74.01 0.01179 77.52 85.41 70.96 

289 55.33 63.63 50.37 0.01103 46.46 58.64 38.47 

290 76.83 80.53 74.35 0.0124 77.67 85.11 71.43 

291 58.63 65.45 54.41 0.01222 52.61 62.24 45.56 

292 76.65 81.02 73.71 0.01268 77.19 84.88 70.77 

293 53.80 62.39 48.61 0.01092 46.84 59.85 38.47 

294 76.51 79.70 74.39 0.01179 78.99 85.48 73.42 

295 56.26 63.30 51.92 0.0115 50.77 61.21 43.38 

296 76.49 80.75 73.69 0.01268 78.13 85.94 71.62 

297 56.41 63.55 51.99 0.0112 49.31 59.81 41.95 

298 77.40 81.35 74.78 0.01226 78.30 85.58 72.15 

299 53.30 60.93 48.65 0.0111 46.20 57.51 38.60 

300 76.76 80.57 74.20 0.01228 78.01 85.68 71.59 

 

Fourth, the training used too high a learning rate value, making the training unstable during 

the process, and diverged. In the present text detection study case, the Adam optimizer sometimes 

could not effectively control the learning rate during the training if the learning rate was too large. 

Therefore, using additional momentum could effectively make the training more stable. However, 

stable training process did not guarantee that the predictive model obtains high performance from 

that training. So, the training hyperparameter should be handled with care for each machine 

learning study case. The F-Score, Prediction, and Recall is illustrated in Figure below. The learning 

set of 1 to 3 used changing learning rate of each epoch which is related to the momentum 

application. In the other hand, the learning set of 4 – 6 used constant learning rate, which is 1 E -

3, 1 E-4 and 1E-5 respectively. It is shown that using large value of learning rate made the training 

was highly unstable. 
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Figure 5.12. F-Score of Batch 32 Training Result – Test Data 

 

Figure 5.13. Precision of Batch 32 Training Result – Test Data 
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Figure 5.14. Recall of Batch 32 Training Result – Test Data 

 

Lastly, using smaller iterations compared to the number of training images in an epoch was 

quite useful for searching the good performance of predictive modeling. The trade-off of reducing 

the number of the iterations was increasing the number of epochs. However, since the training 

dataset was shuffled for each iteration, it was possible for the model to converge only at most of 

the test dataset. So, further confirmation of the model by adding more datasets is recommended 

and unfortunately we did not have the minimum required number of the images to approach the 

global ground truth. 
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 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The fine-tuning of the pretrained model to detect the unstructured text in structural 

drawings were conducted and yielded acceptable performance. Based on the results and lesson 

learned along the training, some conclusions about the implementation of text detection for reading 

structural drawings are listed as follows: 

• The present predictive modeling workflow and its computational requirement is 

sufficient for performing unstructured text detection in structural drawings. The 

present strong-supervised predictive model can be fine-tuned to detect the words 

that appear in a structural drawing. 

• Data augmentations, especially by rotating the words, are important to prepare the 

model to properly detect the rotated texts. This frequently exists in a structural 

drawing. 

• Partitioning the structural drawing into smaller images is significant fo text 

detection. Resizing large dimension images into smaller dimensions is necessary to 

fit the model’s input size but can downgrade the input quality. 

• Reducing the number of iterations by increasing the number of epochs is effective 

as a strategy for the predictive model training. 

• Training hyperparameters are usually selected and tested with smaller number of 

training images before executing the full training. This step is helpful to confirm 

the network architectures and the programming codes are all working well.  

• Higher batch size makes the training progress more stable, but it does not influence 

the performance of the model. 

6.2 Recommendations 

Some recommendations for further research to expand structural drawing information 

extraction and improve the current technique applied in text detection are listed as follows: 

• Applying text detection and text recognition in hand-written texts would be 

beneficial since there are a large number of old drawings that need to be digitalized. 
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• Applying natural language programming to understand the context of the extracted 

words, so an information summary of the structural drawings can be given to 

engineers 

• Correlating the context of the recognized words and their positions to the nearest 

objects, such as column labels, wall labels, beam labels, floor plan dimension, 

drawing scale, structural component dimensions and details, would be beneficial in 

reading and understanding the structural drawings automatically by the computer. 

• Improving the predictive modelling by doing weakly supervised learning to ensure 

the text detection and text recognition capability. Strong supervisied learning 

requires character-level annotations at the words, which needs to be partially 

automated and confirmed by the labeler because the number of characters inside a 

structural drawing is large. 

• Combining the detected text bounding boxes in cropped images into the original 

structural drawings so the text detection can be processed further into another post-

processing. 
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APPENDIX A. LICENSES AND PERMISSIONS 

CRAFT Main Program by Naver Corp. 

Source: https://github.com/clovaai/CRAFT-pytorch/blob/master/LICENSE 

 

Copyright (c) 2019-present NAVER Corp. 

 

Permission is hereby granted, free of charge, to any person obtaining a copy 

of this software and associated documentation files (the "Software"), to deal 

in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

copies of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in 

all copies or substantial portions of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT 

SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

OTHER 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN 

THE SOFTWARE. 

 

https://github.com/clovaai/CRAFT-pytorch/blob/master/LICENSE
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CRAFT Implementation by Mayank Kumar Singh. 

Source: https://github.com/autonise/CRAFT-Remade/blob/master/LICENSE 

 

MIT License 

 

Copyright (c) 2021 Mayank Kumar Singh 

 

Permission is hereby granted, free of charge, to any person obtaining a copy 

of this software and associated documentation files (the "Software"), to deal 

in the Software without restriction, including without limitation the rights 

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

copies of the Software, and to permit persons to whom the Software is 

furnished to do so, subject to the following conditions: 

 

The above copyright notice and this permission notice shall be included in all 

copies or substantial portions of the Software. 

 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 

EXPRESS OR 

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 

MERCHANTABILITY, 

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT 

SHALL THE 

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 

OTHER 

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 

ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE 

SOFTWARE. 

 

https://github.com/autonise/CRAFT-Remade/blob/master/LICENSE
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SynthText Dataset by Ankush Gupta et al. 

Source : https://www.robots.ox.ac.uk/~vgg/data/scenetext/ 

 

 

 

Source : https://github.com/ankush-me/SynthText/blob/master/LICENSE 

 

Copyright 2017 Ankush Gupta.  All rights reserved. 

 

                                Apache License 

                           Version 2.0, January 2004 

                        http://www.apache.org/licenses/ 

 

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 

https://www.robots.ox.ac.uk/~vgg/data/scenetext/
https://github.com/ankush-me/SynthText/blob/master/LICENSE
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   1. Definitions. 

 

      "License" shall mean the terms and conditions for use, reproduction, 

      and distribution as defined by Sections 1 through 9 of this document. 

 

      "Licensor" shall mean the copyright owner or entity authorized by 

      the copyright owner that is granting the License. 

 

      "Legal Entity" shall mean the union of the acting entity and all 

      other entities that control, are controlled by, or are under common 

      control with that entity. For the purposes of this definition, 

      "control" means (i) the power, direct or indirect, to cause the 

      direction or management of such entity, whether by contract or 

      otherwise, or (ii) ownership of fifty percent (50%) or more of the 

      outstanding shares, or (iii) beneficial ownership of such entity. 

 

      "You" (or "Your") shall mean an individual or Legal Entity 

      exercising permissions granted by this License. 

 

      "Source" form shall mean the preferred form for making modifications, 

      including but not limited to software source code, documentation 

      source, and configuration files. 

 

      "Object" form shall mean any form resulting from mechanical 

      transformation or translation of a Source form, including but 

      not limited to compiled object code, generated documentation, 

      and conversions to other media types. 

 

      "Work" shall mean the work of authorship, whether in Source or 

      Object form, made available under the License, as indicated by a 
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      copyright notice that is included in or attached to the work 

      (an example is provided in the Appendix below). 

 

      "Derivative Works" shall mean any work, whether in Source or Object 

      form, that is based on (or derived from) the Work and for which the 

      editorial revisions, annotations, elaborations, or other modifications 

      represent, as a whole, an original work of authorship. For the purposes 

      of this License, Derivative Works shall not include works that remain 

      separable from, or merely link (or bind by name) to the interfaces of, 

      the Work and Derivative Works thereof. 

 

      "Contribution" shall mean any work of authorship, including 

      the original version of the Work and any modifications or additions 

      to that Work or Derivative Works thereof, that is intentionally 

      submitted to Licensor for inclusion in the Work by the copyright owner 

      or by an individual or Legal Entity authorized to submit on behalf of 

      the copyright owner. For the purposes of this definition, "submitted" 

      means any form of electronic, verbal, or written communication sent 

      to the Licensor or its representatives, including but not limited to 

      communication on electronic mailing lists, source code control systems, 

      and issue tracking systems that are managed by, or on behalf of, the 

      Licensor for the purpose of discussing and improving the Work, but 

      excluding communication that is conspicuously marked or otherwise 

      designated in writing by the copyright owner as "Not a Contribution." 

 

      "Contributor" shall mean Licensor and any individual or Legal Entity 

      on behalf of whom a Contribution has been received by Licensor and 

      subsequently incorporated within the Work. 

 

   2. Grant of Copyright License. Subject to the terms and conditions of 

      this License, each Contributor hereby grants to You a perpetual, 
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      worldwide, non-exclusive, no-charge, royalty-free, irrevocable 

      copyright license to reproduce, prepare Derivative Works of, 

      publicly display, publicly perform, sublicense, and distribute the 

      Work and such Derivative Works in Source or Object form. 

 

   3. Grant of Patent License. Subject to the terms and conditions of 

      this License, each Contributor hereby grants to You a perpetual, 

      worldwide, non-exclusive, no-charge, royalty-free, irrevocable 

      (except as stated in this section) patent license to make, have made, 

      use, offer to sell, sell, import, and otherwise transfer the Work, 

      where such license applies only to those patent claims licensable 

      by such Contributor that are necessarily infringed by their 

      Contribution(s) alone or by combination of their Contribution(s) 

      with the Work to which such Contribution(s) was submitted. If You 

      institute patent litigation against any entity (including a 

      cross-claim or counterclaim in a lawsuit) alleging that the Work 

      or a Contribution incorporated within the Work constitutes direct 

      or contributory patent infringement, then any patent licenses 

      granted to You under this License for that Work shall terminate 

      as of the date such litigation is filed. 

 

   4. Redistribution. You may reproduce and distribute copies of the 

      Work or Derivative Works thereof in any medium, with or without 

      modifications, and in Source or Object form, provided that You 

      meet the following conditions: 

 

      (a) You must give any other recipients of the Work or 

          Derivative Works a copy of this License; and 

 

      (b) You must cause any modified files to carry prominent notices 

          stating that You changed the files; and 
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      (c) You must retain, in the Source form of any Derivative Works 

          that You distribute, all copyright, patent, trademark, and 

          attribution notices from the Source form of the Work, 

          excluding those notices that do not pertain to any part of 

          the Derivative Works; and 

 

      (d) If the Work includes a "NOTICE" text file as part of its 

          distribution, then any Derivative Works that You distribute must 

          include a readable copy of the attribution notices contained 

          within such NOTICE file, excluding those notices that do not 

          pertain to any part of the Derivative Works, in at least one 

          of the following places: within a NOTICE text file distributed 

          as part of the Derivative Works; within the Source form or 

          documentation, if provided along with the Derivative Works; or, 

          within a display generated by the Derivative Works, if and 

          wherever such third-party notices normally appear. The contents 

          of the NOTICE file are for informational purposes only and 

          do not modify the License. You may add Your own attribution 

          notices within Derivative Works that You distribute, alongside 

          or as an addendum to the NOTICE text from the Work, provided 

          that such additional attribution notices cannot be construed 

          as modifying the License. 

 

      You may add Your own copyright statement to Your modifications and 

      may provide additional or different license terms and conditions 

      for use, reproduction, or distribution of Your modifications, or 

      for any such Derivative Works as a whole, provided Your use, 

      reproduction, and distribution of the Work otherwise complies with 

      the conditions stated in this License. 
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   5. Submission of Contributions. Unless You explicitly state otherwise, 

      any Contribution intentionally submitted for inclusion in the Work 

      by You to the Licensor shall be under the terms and conditions of 

      this License, without any additional terms or conditions. 

      Notwithstanding the above, nothing herein shall supersede or modify 

      the terms of any separate license agreement you may have executed 

      with Licensor regarding such Contributions. 

 

   6. Trademarks. This License does not grant permission to use the trade 

      names, trademarks, service marks, or product names of the Licensor, 

      except as required for reasonable and customary use in describing the 

      origin of the Work and reproducing the content of the NOTICE file. 

 

   7. Disclaimer of Warranty. Unless required by applicable law or 

      agreed to in writing, Licensor provides the Work (and each 

      Contributor provides its Contributions) on an "AS IS" BASIS, 

      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 

      implied, including, without limitation, any warranties or conditions 

      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 

      PARTICULAR PURPOSE. You are solely responsible for determining the 

      appropriateness of using or redistributing the Work and assume any 

      risks associated with Your exercise of permissions under this License. 

 

   8. Limitation of Liability. In no event and under no legal theory, 

      whether in tort (including negligence), contract, or otherwise, 

      unless required by applicable law (such as deliberate and grossly 

      negligent acts) or agreed to in writing, shall any Contributor be 

      liable to You for damages, including any direct, indirect, special, 

      incidental, or consequential damages of any character arising as a 

      result of this License or out of the use or inability to use the 

      Work (including but not limited to damages for loss of goodwill, 
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      work stoppage, computer failure or malfunction, or any and all 

      other commercial damages or losses), even if such Contributor 

      has been advised of the possibility of such damages. 

 

   9. Accepting Warranty or Additional Liability. While redistributing 

      the Work or Derivative Works thereof, You may choose to offer, 

      and charge a fee for, acceptance of support, warranty, indemnity, 

      or other liability obligations and/or rights consistent with this 

      License. However, in accepting such obligations, You may act only 

      on Your own behalf and on Your sole responsibility, not on behalf 

      of any other Contributor, and only if You agree to indemnify, 

      defend, and hold each Contributor harmless for any liability 

      incurred by, or claims asserted against, such Contributor by reason 

      of your accepting any such warranty or additional liability. 

 

   END OF TERMS AND CONDITIONS 

 

   APPENDIX: How to apply the Apache License to your work. 

 

      To apply the Apache License to your work, attach the following 

      boilerplate notice, with the fields enclosed by brackets "{}" 

      replaced with your own identifying information. (Don't include 

      the brackets!)  The text should be enclosed in the appropriate 

      comment syntax for the file format. We also recommend that a 

      file or class name and description of purpose be included on the 

      same "printed page" as the copyright notice for easier 

      identification within third-party archives. 

 

   Copyright 2017, Ankush Gupta. 

 

   Licensed under the Apache License, Version 2.0 (the "License"); 
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   you may not use this file except in compliance with the License. 

   You may obtain a copy of the License at 

 

       http://www.apache.org/licenses/LICENSE-2.0 

 

   Unless required by applicable law or agreed to in writing, software 

   distributed under the License is distributed on an "AS IS" BASIS, 

   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

   See the License for the specific language governing permissions and 

   limitations under the License.  
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